
List of Data Structures C++ 11 standard

1. Array
2. Vector
3. List
4. Queue
5. Priority_queue
6. Stack
7. Map
8. Unordered_map
9. Set
10. Unordered_set
11. Linked List
12. Binary tree

Overview of Complexity

Data Structure Details

Vector

Pros:

• Good for adding but not deleting
• Quick access

Cons:

• Slow insertion/deletion in the middle of the array
• Slow when dynamically changing storage

Constructors:

Constructor Examples:

// constructing vectors
#include <iostream>
#include <vector>

int main ()
{
 // constructors used in the same order as described above:
 std::vector<int> first; // empty vector of ints
 std::vector<int> second (4,100); // four ints with value 100
 std::vector<int> third (second.begin(),second.end()); // iterating through second
 std::vector<int> fourth (third); // a copy of third

 // the iterator constructor can also be used to construct from arrays:
 int myints[] = {16,2,77,29};
 std::vector<int> fifth (myints, myints + sizeof(myints) / sizeof(int));

 std::cout << "The contents of fifth are:";
 for (std::vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
 std::cout << ' ' << *it;
 std::cout << '\n';

Iterators:
std::vector::begin()
std::vector::end()

Capacitor:
size() size_type size() const
capacity() size_type capacity() const
empty() bool empty() const

Element Access:
operator[] O(1)
front() reference front()
back() reference back()

Modifiers:
push_back() O(1) void push_back(const value_type& val)
pop_back() O(1) void pop_back();
insert() O(n) iterator insert (iterator position, const value_type &val)

void insert (iterator position, size_type n, const value_type *val)

Queue

Pros:

• First-In First-Out operations
• BFS

Constructors:

Constructor Examples:

Member Functions:
empty() bool empty() const
size() size_type size() const
front() O(1) reference &front()
back() O(1) reference &back()
push() O(1) void push (const value_type &val)
pop() O(1) void pop();

Priority Queue

Note:
When overloading operator, the left variable in the top element of the priority queue

Description:

Constructor:

Priority queues are a type of container adaptors, specifically designed such that its first element is always the
greatest of the elements it contains, according to some strict weak ordering criterion.

This context is similar to a heap, where elements can be inserted at any moment, and only the max
heap element can be retrieved (the one at the top in the priority queue).

Priority queues are implemented as container adaptors, which are classes that use an encapsulated object of a
specific container class as its underlying container, providing a specific set of member functions to access its
elements. Elements are popped from the "back" of the specific container, which is known as the top of the
priority queue.

The underlying container may be any of the standard container class templates or some other specifically
designed container class. The container shall be accessible through random access iterators and support the
following operations:

empty()
size()
front()
push_back()
pop_back()

The standard container classes vector and deque fulfill these requirements. By default, if no container class is
specified for a particular priority_queue class instantiation, the standard container vector is used.

Constructor Example:

Member Functions:
empty()
size()
top()
push()
pop()

// constructing priority queues
#include <iostream> // std::cout
#include <queue> // std::priority_queue
#include <vector> // std::vector
#include <functional> // std::greater

class mycomparison
{
 bool reverse;
public:
 mycomparison(const bool& revparam=false)
 {reverse=revparam;}
 bool operator() (const int& lhs, const int&rhs) const
 {
 if (reverse) return (lhs>rhs);
 else return (lhs<rhs);
 }
};

int main ()
{
 int myints[]= {10,60,50,20};

 std::priority_queue<int> first;
 std::priority_queue<int> second (myints,myints+4);
 std::priority_queue<int, std::vector<int>, std::greater<int> >
 third (myints,myints+4);
 // using mycomparison:
 typedef std::priority_queue<int,std::vector<int>,mycomparison> mypq_type;

 mypq_type fourth; // less-than comparison
 mypq_type fifth (mycomparison(true)); // greater-than comparison

 return 0;
}

The example does not produce any output, but it constructs different priority_queue objects:
- First is empty.
- Second contains the four ints defined for myints, with 60 (the highest) at its top.
- Third has the same four ints, but because it uses greater instead of the default (which is less), it has 10 as its
top element.
- Fourth and fifth are very similar to first: they are both empty, except that these use mycomparison for
comparisons, which is a special stateful comparison function that behaves differently depending on a flag set on
construction.

Stack

Description

Constructor

Stacks are a type of container adaptor, specifically designed to operate in a LIFO context (last-in first-out), where
elements are inserted and extracted only from one end of the container.

stacks are implemented as containers adaptors, which are classes that use an encapsulated object of a specific
container class as its underlying container, providing a specific set of member functions to access its elements.
Elements are pushed/popped from the "back" of the specific container, which is known as the top of the stack.

The underlying container may be any of the standard container class templates or some other specifically designed
container class. The container shall support the following operations:

• empty
• size
• back
• push_back
• pop_back

The standard container classes vector, deque and list fulfill these requirements. By default, if no container class
is specified for a particular stack class instantiation, the standard container deque is used.

Constructor Examples:

Member Functions:
empty()
size()
top()
push()
pop()

map

Description:

// constructing stacks
#include <iostream> // std::cout
#include <stack> // std::stack
#include <vector> // std::vector
#include <deque> // std::deque

int main ()
{
 std::deque<int> mydeque (3,100); // deque with 3 elements
 std::vector<int> myvector (2,200); // vector with 2 elements

 std::stack<int> first; // empty stack
 std::stack<int> second (mydeque); // stack initialized to copy of deque

 std::stack<int,std::vector<int> > third; // empty stack using vector
 std::stack<int,std::vector<int> > fourth (myvector);

 std::cout << "size of first: " << first.size() << '\n';
 std::cout << "size of second: " << second.size() << '\n';
 std::cout << "size of third: " << third.size() << '\n';
 std::cout << "size of fourth: " << fourth.size() << '\n';

 return 0;
}

Constructor:

Maps are associative containers that store elements formed by a combination of a key value and a mapped
value, following a specific order.

In a map, the key values are generally used to sort and uniquely identify the elements, while the mapped
values store the content associated to this key. The types of key and mapped value may differ, and are
grouped together in member type value_type, which is a pair type combining both:
 typedef pair<const Key, T> value_type;

Internally, the elements in a map are always sorted by its key following a specific strict weak
ordering criterion indicated by its internal comparison object (of type Compare).

map containers are generally slower than unordered_map containers to access individual elements by
their key, but they allow the direct iteration on subsets based on their order.

The mapped values in a map can be accessed directly by their corresponding key using the bracket
operator ((operator[]).

Maps are typically implemented as binary search trees.

Constructor Examples:

// constructing maps
#include <iostream>
#include <map>

bool fncomp (char lhs, char rhs) {return lhs<rhs;}

struct classcomp {
 bool operator() (const char& lhs, const char& rhs) const
 {return lhs<rhs;}
};

int main ()
{
 std::map<char,int> first;

 first['a']=10;
 first['b']=30;
 first['c']=50;
 first['d']=70;

 std::map<char,int> second (first.begin(),first.end());

 std::map<char,int> third (second);

 std::map<char,int,classcomp> fourth; // class as Compare

 bool(*fn_pt)(char,char) = fncomp;
 std::map<char,int,bool(*)(char,char)> fifth (fn_pt); // function pointer as
Compare

 return 0;
}

Iterators:

std::vector::begin()
std::vector::end()

Capacity:
size() size_type size() const
empty() bool empty() const

Element Access:
operator[]

Modifiers:
insert() pair<iterator, bool> insert (const value_type &val)
erase() iterator erase (const_iterator position)

size_type erase (const key_type &k)
iterator erase (const_iterator first, const_iterator last)

Operations:
find iterator find (const key_type &k)

Unordered_map

Description:

Constructors:

Unordered maps are associative containers that store elements formed by the combination of a key value and
a mapped value, and which allows for fast retrieval of individual elements based on their keys.

In an unordered_map, the key value is generally used to uniquely identify the element, while the mapped
value is an object with the content associated to this key. Types of key and mapped value may differ.

Internally, the elements in the unordered_map are not sorted in any particular order with respect to either
their key or mapped values, but organized into buckets depending on their hash values to allow for fast
access to individual elements directly by their key values (with a constant average time complexity on
average).

unordered_map containers are faster than map containers to access individual elements by their key,
although they are generally less efficient for range iteration through a subset of their elements.

Unordered maps implement the direct access operator (operator[]) which allows for direct access of
the mapped value using its key value as argument.

Iterators in the container are at least forward iterators.

Constructor Examples:

Iterators:
std::vector::begin()
std::vector::end()

Capacity:
size()
capacity()
empty()

Element Access:
operator[]

Modifiers

insert()
erase()

// constructing unordered_maps
#include <iostream>
#include <string>
#include <unordered_map>

typedef std::unordered_map<std::string,std::string> stringmap;

stringmap merge (stringmap a,stringmap b) {
 stringmap temp(a); temp.insert(b.begin(),b.end()); return temp;
}

int main ()
{
 stringmap first; // empty
 stringmap second ({{"apple","red"},{"lemon","yellow"}}); // init list
 stringmap third ({{"orange","orange"},{"strawberry","red"}}); // init list
 stringmap fourth (second); // copy
 stringmap fifth (merge(third,fourth)); // move
 stringmap sixth (fifth.begin(),fifth.end()); // range

 std::cout << "sixth contains:";
 for (auto& x: sixth) std::cout << " " << x.first << ":" << x.second;
 std::cout << std::endl;

 return 0;
}

Set

Description:

Constructor:

Constructor Examples:

Sets are containers that store unique elements following a specific order.

In a set, the value of an element also identifies it (the value is itself the key, of type T), and each value must be
unique. The value of the elements in a set cannot be modified once in the container (the elements are always
const), but they can be inserted or removed from the container.

Internally, the elements in a set are always sorted following a specific strict weak ordering criterion indicated
by its internal comparison object (of type Compare).

set containers are generally slower than unordered_set containers to access individual elements by their key,
but they allow the direct iteration on subsets based on their order.

Sets are typically implemented as binary search trees.

Iterators:
std::vector::begin()
std::vector::end()

Capacity:
size() size_type size() const
empty() bool empty() const

Modifiers:
insert() pair<iterator,bool> insert (const value_type& val);
erase() iterator erase (const_iterator position)

size_type erase (const value_type &val)
iterator erase(const_iterator first, const_iterator last)

Operations:
find() iterator find (const value_type& val);

// constructing sets
#include <iostream>
#include <set>

bool fncomp (int lhs, int rhs) {return lhs<rhs;}

struct classcomp {
 bool operator() (const int& lhs, const int& rhs) const
 {return lhs<rhs;}
};

int main ()
{
 std::set<int> first; // empty set of ints

 int myints[]= {10,20,30,40,50};
 std::set<int> second (myints,myints+5); // range

 std::set<int> third (second); // a copy of second

 std::set<int> fourth (second.begin(), second.end()); // iterator ctor.

 std::set<int,classcomp> fifth; // class as Compare

 bool(*fn_pt)(int,int) = fncomp;
 std::set<int,bool(*)(int,int)> sixth (fn_pt); // function pointer as Compare

 return 0;
}

Unordered_set

Description:

Constructor:

Unordered sets are containers that store unique elements in no particular order, and which allow for fast
retrieval of individual elements based on their value.

In an unordered_set, the value of an element is at the same time its key, that identifies it uniquely. Keys are
immutable, therefore, the elements in an unordered_set cannot be modified once in the container - they can be
inserted and removed, though.

Internally, the elements in the unordered_set are not sorted in any particular order, but organized
into buckets depending on their hash values to allow for fast access to individual elements directly by
their values (with a constant average time complexity on average).

unordered_set containers are faster than set containers to access individual elements by their key, although
they are generally less efficient for range iteration through a subset of their elements.

Iterators in the container are at least forward iterators.

Constructor Example:

Iterators:
std::vector::begin()
std::vector::end()

Capacity:
size()
empty()

Modifiers:
insert()
erase()

Operations:
find()

Set vs unordered_set
https://www.geeksforgeeks.org/set-vs-unordered_set-c-stl/

// constructing unordered_sets
#include <iostream>
#include <string>
#include <unordered_set>

template<class T>
T cmerge (T a, T b) { T t(a); t.insert(b.begin(),b.end()); return t; }

int main ()
{
 std::unordered_set<std::string> first; // empty
 std::unordered_set<std::string> second ({"red","green","blue"}); // init list
 std::unordered_set<std::string> third ({"orange","pink","yellow"}); // init list
 std::unordered_set<std::string> fourth (second); // copy
 std::unordered_set<std::string> fifth (cmerge(third,fourth)); // move
 std::unordered_set<std::string> sixth (fifth.begin(), fifth.end()); // range

 std::cout << "sixth contains:";
 for (const std::string& x: sixth) std::cout << " " << x;
 std::cout << std::endl;

 return 0;
}

